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Abstract
Deploying a recently developed semiclassical theory of quasiparticles in the
superconducting state we study the de Haas–van Alphen effect. We find that the
oscillations have the same frequency as in the normal state but their amplitude is
reduced. We find an analytic formula for this damping which is due to tunnelling
between semiclassical quasiparticle orbits comprising both particle- and hole-
like segments. The quantitative predictions of the theory are consistent with
the available data.

The revival of interest [1–3] in studying the de Haas–van Alphen (dHvA) effect in the
superconducting state [4] is driven by the hope that this would provide new k-vector-dependent
information about the superconducting gap �(k). Evidently this would be of particular
importance in connection with anisotropic superconductors where �(k) can have lines of
zeroes on the Fermi surface [5]. Unfortunately at this stage there is no consensus concerning
the mechanism of how the experimentally observed oscillations of the diamagnetic response
of a type II superconductor come about [6–17] (see [7] for a recent review of the various
theoretical approaches). Using our recently developed very general semiclassical theory of
quasiparticles in the superconducting state [18], in what follows we develop a semiclassical
picture of Landau-like orbits of quasiparticles suggested by the simple model calculation of
Miller and Györffy [8]. Clearly the long term aim of a semiclassical theory is to provide
an analogue of the Lifshitz–Kosevich (LK) formula for superconductors. Hopefully such
a formula would allow the interpretation of experiments in terms of the Fermi surface and
the variation of �(k) on the Fermi surface. At this stage we only deal with conventional
superconductors with the usual s-wave pairing. As it happens this is the only case for which
reliable data already exists. Within the limits of a number of simplifying assumptions the above
semiclassical theory provides for Bohr–Sommerfeld-like quantization rules for quasiparticles.
3 Previous address: H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8, UK.
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In particular it allows for the analogue of magnetic breakdown which involves tunnelling
between distinct semiclassical orbits. We show that there are orbits which enclose areas
that are precisely the same size as the Landau orbits in the normal state, but involve such
tunnelling. As will be seen the consequence of these tunnelling events is a damping factor in
the LK formulae, in agreement with experiments [1–3].

The theory we wish to use seeks the semiclassical spectrum of the following Bogoliubov–
de Gennes (BdG) equations:( 1

2m (p̂ + eA(r))2 + V (r) − εF |�(r)|eiφ(r)

|�(r)|e−iφ(r) − 1
2m (p̂ − eA(r))2 − V (r) + εF

) (
uλ(r)

vλ(r)

)

= Eλ

(
uλ(r)

vλ(r)

)
, (1)

where uλ(r) and vλ(r) are the probability amplitudes that an elementary excitation is a
quasiparticle and quasihole, respectively, �(r) = |�|eiφ(r) is the order parameter and the
other symbols have the conventional meaning. For type II superconductors in large magnetic
fields �(r) takes the form of the Abrikosov flux lattice [19], comprising a periodic array of
vortices. The effective classical mechanics, Hamilton–Jacobi equations for the quasiparticles,
corresponding to (1), is described by the following effective Hamiltonians [18]:

Eα(p, r) = p · vs(r) + α

√(
p2

2m
+

1

2
mv2

s (r) + V (r) − εF

)2

+ |�(r)|2, (2)

where α = ± and mvs(r) = 1
2 h̄∇φ(r)+eA(r) is the superfluid velocity. On a constant energy

surface these determine, implicitly, the functions pα(r) to be used in the Bohr–Sommerfeld
quantization rule. To simplify matters we take the crystal potential V (r) to be a constant. It
is clear from the single vortex solution [18] that the detailed shape of |�(r)| is not essential.
This fact will be used below. In contrast the role of the line of phase singularities [18],
which runs along the vortex core, needs more careful consideration. The topologically non-
trivial behaviour of the phase gradient (

∮ ∇φ · dr �= 0 for any path enclosing lines of phase
singularities) causes the phase gradient, ∇φ, to cancel out (on the average) the increase in A(r)

across the cell. Consequently the Abrikosov form for vs(r) is periodic. The Hamiltonian,
(2), then describes quasiparticles which correspond to spinor Bloch waves [20]. On the
other hand, the topologically non-trivial behaviour of �(r) arises from the superposition of
topologically trivial solutions to the Ginzburg–Landau theory, so long as the coefficients are
suitably determined from minimization of the free energy for the nonlinear problem [19]. In
the light of these observations there are two different approaches that can be taken given the
Hamiltonian (2). The first is to study and quantize the dynamics described by (2) with a full
periodic �(r) and full vs(r). This is a formidable task which is not yet complete. The second
approach, presented in this paper, is to start by considering the solution of the BdG equations
for a topologically trivial �(r) of the form

�(r) = |�(y)| exp(ikx x), (3)

with

|�(y)| = �0 exp

[
−1

2

(
y − h̄kx

2eB

)2/
((2π)−1d2)

]
, (4)

and kx = 2πn/d (d is the flux lattice cell size and n is an integer). A full Bloch wave
solution to equation (1) can then be constructed by forming an appropriate superposition of
solutions using (3) and determining the coefficients from self-consistency. (Note the seemingly
innocent plane wave in (3) is responsible for creating an interference between terms, resulting
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in a topologically non-trivial superposition.) Now the single-valuedness of each solution
for (3) ensures the resulting superposition is also single-valued. Since the former requires the
quantization of a Bohr–Sommerfeld integral for quasiparticles with the �(r) given above, and
quantizing the Bohr–Sommerfeld integral yields the spectrum, a solution using (3) is a shortcut
to the spectrum, if not the full uλ, vλ (which obviously requires further work).

Taking this approach, and working in the Landau gauge, we rewrite (2) as

Eα(p, r) = Pxvs,x(y) + α

√(
p2

2m
+

1

2
mv2

s,x(y) − εF

)2

+ |�(y)|2, (5)

where mvs,x(y) = h̄kx/2+eAx(y) and we have approximated B(r) = ∇×A(r) by a constant
(averaged) B-field. The quasiparticle dynamics described by (5) are integrable and we can
deploy the full semiclassical machinery developed in [18]. This we now do.

The momentum branches defined by the Hamilton–Jacobi equations Eα(p, r) = Eα are

p±,α
y (y) =

√
p2

F − P2
x − p2

z − m2ω2
c ỹ2 ± 2m

√
(Eα + Pxωc ỹ)2 − |�(y)|2, (6)

where ỹ = y − h̄kx/2eB . We see immediately that h̄kx
2eB behaves like an orbit centre (shifting

the y coordinate), though restricted to h̄kx
2eB = nd (n integer). Less obviously, Px also behaves

like an orbit centre (see below). It is natural to restrict it to one flux cell, i.e. − d
2 � Px

eB � + d
2 .

Then, since Px
eB lies within a cell, and h̄kx

2eB represents translations by lattice cell vectors, the
combined pair allow us to centre orbits anywhere in the sample. As we will see, different
placements of orbits within a cell lead to different Eλ, i.e. degeneracy within a cell is lifted.
On the other hand, translations of such an orbit by lattice vectors (different choices of kx) leave
Eλ = Eλ(Px) invariant. One further simplification replaces |�(y)| by 〈|�(y)|〉 = |�| in the
region of interest. Outside this region we expect to set |�(y)| = 0 but, since from (6) any
choice in the range 0 � �(y) � |�| for y − h̄kx/2eB > d makes little difference, we can
for simplicity still take |�(y)| = |�|. Taking all these observations into account the constant
energy orbits corresponding to these relations are the same as those studied by Burmistrov
and Dubovskii [15]. Firstly we investigate the orbits and spectrum for Px = 0. Figure 1(a)
shows typical classical phase space orbits defined by (6) with Px = 0. The corresponding
Bohr–Sommerfeld quantization condition yields

E±
n (pz) = ±

√(
h̄ωc

(
n +

1

2

)
+

p2
z

2m
− εF

)2

+ |�|2. (7)

This is the Landau level spectrum, shifted into two square root singularities (figure 2), which
was studied previously by Miller and Györffy [8] and Miyake [11]. As it turns out this theory
is over-simplified but nevertheless it contains the basic physics. The picture is one of Landau
levels which march across the gap [8] giving the same frequency as in the normal state, but with
an extra damping, due to |�| [8, 11], given by Rsc = aK1(a), with a = 2π� |�|

h̄ωc
, (� integer),

where K1 is the Bessel function for imaginary argument. Whilst Rsc(a) fits the experimental
data it predicts too much damping for realistic values of |�|. However, as was pointed out
in [15] Px �= 0 changes the spectra drastically because, as is clear from (5), ‘Landau level’
energies depend upon Px . The rest of this paper deals with these complications.

Thus we consider the orbits and spectrum for Px �= 0. Figures 1(b)–(d) demonstrate the
marked change in the structure of the phase space orbits as Px increases from zero (figure 1(a)).
To understand the behaviour of the branches of p±,α

y , it is helpful to view the orbit structure
as resulting from the competition between two different types of turning point. The usual
turning points, p±,α

y = 0, are due to the harmonic oscillator confining potential, 1
2 mω2

c ỹ2

(ỹ = y − h̄kx/2eB) in (6) and are those seen in figures 1(a) and (b). However, the presence
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Figure 1. Phase space orbits defined by p±,α
y given in (6) with |�(y)| = |�|. The full curve is for a

particle-like excitation, the broken curve is for a hole-like one. Arrows indicate the direction of the
velocity. (a) Px = 0. The turning points along the y axis are given by p±,α

y = 0. (b) Px �= 0 and
small. The orbits are shifted in opposite directions. The vertical dotted lines indicate the position of
the Andreev-like turning points, y+(Px ) and y−(Px ), see equation (8). (c) As Px increases further
the Andreev-like turning point y+, for which p±,α

y �= 0, is reached before the normal turning points
given by p±,α

y = 0. MAS takes place (see text). (d) Px increases even further. Now MAS also
occurs at y− creating a second particle–hole orbit. The two orbits are separated in real space by
δy = 2|�|/Px ωc.
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Figure 2. Landau level spectrum defined by (7). The BCS density of states is included to emphasize
how it is broken in a magnetic field into Landau levels, which are nonetheless pushed apart by the
gap, |�|.



A damping of the de Haas–van Alphen oscillations in the superconducting state 243

of the second square root in (6),
√

(E + Pxωc ỹ)2 − |�|2, which we denote by ε(ỹ) provides
an alternative reflection mechanism for which p±,α

y �= 0. If ε(ỹ) becomes zero before the
normal turning points are reached the momentum becomes complex and the wavefunction will
correspondingly exhibit evanescent decay. Classically the excitation undergoes reflection.
These new turning points given by ε(ỹ) = 0 are

y± = ±|�| − E

Pxωc
. (8)

This reflection process is analogous to Andreev scattering [21]. Andreev scattering is due
to scattering from inhomogeneities in |�(r)|. Thus

√
E2 − |�(r)|2 → 0 as |�(r)| → E

from below. The reflection process we consider has |�| = constant, but due to the non-zero
vector potential the extra term, Pxωc ỹ, can still cause ε(ỹ) → 0. (It is for this reason that
the detailed shape of |�(y)| is not essential.) To emphasize the similarity of this process to
Andreev reflection and the role of the vector potential we shall call the scattering mechanism
magnetic Andreev scattering (MAS) and y± Andreev-like turning points.

The appearance of MAS when Px is varied (figures 1(c) and (d)) can then be explained as
follows. From (8) we see that, as Px → 0, y± → −∞ (E � |�|). When Px becomes non-
zero the Andreev-like turning points move in from −∞ towards the normal turning points.
We also see, as stated above, that Px acts essentially like an orbit centre, the particle- and
hole-like orbits (see below) being pulled in opposite directions due to their opposite charge
(figure 1(b)). The orbits first intersect when p+

y(y+) = p−
y (y+), i.e. when the Andreev-like

turning point reaches the normal turning point. For a more physical picture of the nature of
these turning points remember that the spinor (the eigenfunction to (1)) being transported along
a given trajectory has both particle, |u|, and hole, |v|, amplitudes and thus carries an effective
charge e∗ = e(|u(r)|2 − |v(r)|2). Evidently e∗(r) is a function of position and, in particular,
changes from e∗ > 0 along p+

y (figure 1(c)), through zero (at the turning point) to e∗ < 0
along p−

y . So the effective charge of the excitation changes sign at y+ and correspondingly the
direction of circulation in the magnetic field is reversed. A particle-like excitation is reflected
as a hole-like excitation, and a given orbit has both particle- and hole-like segments.

Having discussed the appearance and interpretation of the MAS orbits we now turn to their
quantization. The spectrum obtained from semiclassical quantization is shown in figure 3.
Firstly, note that at Px = 0 there are Landau levels corresponding to (7) which are excluded
from the gap. As we increase Px we reach the situation shown in figure 1(c). The sensitive
dependence of the turning point y+(Px) upon Px results in a spectrum which is highly Px

dependent. Increasing Px further results in the situation shown in figure 1(d). The dramatic
new feature of the spectrum for Px �= 0 is the existence of states inside the gap. These states
are new features of the theory which were not there in the Px = 0 case. However, despite
the existence of these states it is clear that they cannot account for the experimental facts on
their own. These states have considerably different phase space (and hence momentum space)
areas, so that the dHvA frequency for each individual orbit, which is related to this area, will
be very different from that in the normal state. To explain the experiments we, in fact, require
one further bit of physics. This is a phenomenon analogous to ‘magnetic breakdown’, [23, 24]
which we shall now discuss.

We observed that the separation of the two orbits in figure 1(d) is given by δy = y+ − y− =
2|�|/Pxωc and is thus inversely proportional to both Px and the B field (through ωc = eB/m).
For a fixed B , as Px increases this separation in real space rapidly shrinks and quasiparticle
tunnelling becomes a viable option. Purely on physical grounds we see that tunnelling
between orbit segments (figure 4) can reproduce an orbit in phase space with approximately the
normal area. To quantize explicitly the tunnelling orbit the Bohr–Sommerfeld integral can be
represented as a complex contour integral. The Riemann surface for the problem is somewhat
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Figure 3. Semiclassical spectrum obtained by quantizing the orbits in figure 1. Region A
corresponds to quantizing the orbits in figures 1(a) and (b), whilst regions B and C correspond
to quantizing the one or two scattering orbits in figures 1(c) and (d). The spectrum first becomes
gapless when Px = pmin ≈ |�(B)|/vF .

similar to that of Fortin et al [22]. In our case the MAS orbits live on two different sheets
of the Riemann surface but the tunnelling orbit remains on only one sheet. Consequently the
integral is equal to the residue at ∞, on this sheet, and we find

En(pz) = h̄ωc

(
n +

1

2

)
+

p2
z

2m
− εF . (9)

The spectrum is Px -independent and the tunnelling orbits have exactly the normal state
frequency. However, the tunnelling coefficient, which depends upon the imaginary part (Im)
of the momentum, is

T (Px) = exp

(
−1

h̄

∣∣∣∣
∫ y+(Px )

y−(Px )

dy ′ Im p±
y (y ′)

∣∣∣∣
)

, (10)

and clearly depends upon Px and B . For fixed Px , δy ∝ 1/B → 0 as B increases, so that the
possibility of tunnelling is enhanced. We can therefore view the tunnelling as ‘magnetic
breakdown of MAS orbits’. Magnetic breakdown in the normal state is a well studied
phenomena [22]. The oscillatory magnetization formula is modified due to the tunnelling.
To account for this we must include the factor T 2k (every revolution of the orbit we pick up
two tunnelling coefficients, and in general we have k revolutions). The Px dependence of (10)
requires the

∑
Px

T 2k to be carried out when calculating the magnetization. (An additional∑
kx

yields the usual degeneracy factor in the formula for the magnetization.) Observing that

P2
x,max � p2

F we find h̄−1
∫

dy ′ Im p±
y (y ′) ≈ π

2
|�|2
h̄ωc

1
vF

1
Px

, where vF is the Fermi velocity.

Using |�(B)| = �(0)(1 − B/Bc2)
1/2 → 0 as B → Bc2 we have the important observation

that T (Px) → 1 for all Px as B → Bc2. Thus the additional damping vanishes as |�| → 0, as
is to be expected. Note that tunnelling is not a small correction: it is zeroth order. The normal
state is recovered for T (Px) → 1.
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Figure 4. The tunnelling orbit (——) comprised of segments from both of the MAS orbits.
Tunnelling from y+ to y− results in an orbit with precisely the same phase space area as for an orbit
in the normal state. The spectrum quantizing such an orbit is given in equation (9).

The main contribution to
∑

Px
T 2k(Px) is obtained for the largest value of Px = eBd/2

and is given by

T 2k(Px = eBd/2) = exp

(
−2

3
2 π

1
2 k

|�|2
h̄ωc




vF

)
, (11)

where 
 = (2eBh̄)−1/2. Interestingly this result is very similar to that found by Maki [9] and
Stephen [10] (see also Wasserman and Springford [14]). However, in our case (11) is a gross
approximation. More generally, we find the extra damping factor in the superconducting state
to be

Rsc(B) = 1

pd

∫ pd(B)

pmin (B)

dPx exp

(
−2k

h̄

∣∣∣∣
∫ y+(Px ,B)

y−(Px ,B)

dy ′ Im p±
y (y ′, Px)

∣∣∣∣
)

, (12)

where pd = eBd/2, and pmin(B) ∼= |�(B)|/vF is the smallest value of Px for which the
spectrum is gapless (see figure 3). Although the above results have been derived for a free-
electron model with short-range attraction, constant (averaged) pairing potential (|�|) and
uniform magnetic field B, provisionally the formula for the damping factor given in (12) can
be compared with that deduced from experiments. We replace vF by its orbitally averaged
quantity and use 〈1/vF 〉 = mb/

√
2h̄eF with mb = 0.9 me, F = 1560 T and |�| = 4.4 meV to

compare (12) with the data for V3Si in figure 5. Even at this early stage we have a satisfactory
fit to the data. Clearly, |�| in the above analysis is an effective quantity whose value cannot
be expected to agree with the zero field |�| of 2.6 meV (see for example [2]). A more detailed
analysis of the existing data as well as a more complete presentation of the theory will be given
elsewhere4.

To summarize we developed a semiclassical theory in the superconducting state. This
theory makes it clear that we must consider new semiclassical orbits involving ‘magnetic
breakdown’ of MAS orbits. It is these new orbits which, when quantized, have precisely
the normal state frequency. The tunnelling involved gives rise to an extra damping in the
superconducting state in agreement with experiments in such classic superconductors as
V3Si. As we have stated in the introduction the long term aim is to derive an analogue of
the LK formula applicable to superconductors. The original LK formula owes its success
4 In preparation.
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Figure 5. Fit of the current theory for the extra damping, Rsc, in the superconducting state to the
data for V3Si using |�| = 4.4 meV. The upper critical field is Bc2 = 18.5 T.

to the semiclassical theory of bands in a magnetic field, and it is highly likely that only a
semiclassical approach to superconductivity will succeed in incorporating the band structure of
these materials. Thus, when generalized to include periodic crystal potential, a more complete
description of the flux lattice, and anisotropic pairing [5], the above theory will also be suitable
for analysing experimental results on exotic superconductors whenever these become available.
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